LoRaWan sensor commands. Version 4.6

Revision 2.22

Contents.
L0 41 =T o 1
{02 414 F= T T E30 [T od g 1 o1 4o o T 2
RF Module command list.............cooiiiiiiiiiiiiicisscsssssssssssssss s s s s s snssnnsnnnnnmmnnmnnmnnnnnnnnnnnnnnnes 3
Detailed description of commands.............ccccoiiiiiiiiiiiiniiisiis s 4
19 17N I 7 RSP 4
DN 17N o O 1 I | SRR 4
NS I AV =\ S T USSP 4
DELTA TIME. ettt et e et e e e e e e e eeeeeeeeesaaaaaeeeaeeeesaasssaneeeeeseasnnsnnneaaaeans 6
GET _CURRENT ...ttt e e e e et e et e e e e et et e e e e e e e e s nat e e eeeeeeeaannnneneeaeeeeannnnnneees 6
TIMEZ000. ... eeeeeeee e ettt e e e e e e et eeeee e e e s naaeeeeeaaeeeeannsaeeeeaeeeea e nnnneeeeaeeeeeannnnnnneeeeeeeaanns 6
N T S I I SRR 6
NEWV BV EN T ettt e e e e e et e e e e e e e et aeeeeaeeeesassseeeeeeeesaananssnneeeeeesanssssnneaaaens 7
DATA DAY _MUL... .ottt ettt e e e e e e e e e e e e e e e s s e e e eeaaeeeeasssaseeaaaeesenasnees 8
DATA _HOUR MUL ...ttt e e e ettt et e e e e e st e e e e e e e e s nnsseeeeeeeeeeansnneeeeeeeeaanns 9
GET_CURRENT _MUL ...ttt ettt e e e e e e ettt e e e e e e e e s nntneeeeeeeeaannnnnneeeaens 10
F = ST N I/ AN B 7 PR 11
Supported Downlink commands. Server-side requUEest...........cccuvrrrrmmmmmmrrrrerrreerrererer e 12
SET _TIMEZ2000.... ...ttt e e e ettt e e e e e e ettt e e e e e e e e s e e eeeaeeeesaassseeeeaeeaasassssaneeaaeeeennsnnes 12
SET _PARAMETERSttt e e e e e e et e e e e e e e e nnteeeeeeeeeaannnnneeeeeens 13
GET_PARAMETERS. ...ttt e e e e e e e et e e e e e e e e s nnaareeeaeeeeennnnnneees 16
GET_ARCHIVE _HOURSottt e e e et e e e e e e s e e e e aaeeseennnsseeeeeaeeeaannnes 17
GET _ARGCHIVE DAY S . ittt ettt e e e e e e et et e e e e e e s b e e eeeaeeeaanasaseeeeaaeeeeansnrenes 17
GET _CURRENT ...ttt e oo e ettt e e e e e et e e e e e e e e e s nne e e e e e e e e aaannnneeeeeeeeeennnnnees 18
GET_ARCHIVE _EVENT S ..ottt e e e e e et e e e e e e e et e e e e e e e eannnneeeeaeeeeanns 18
CORRECT _TIMEZ2000.......cetttteeeeeeiieiieeee e e eseteeee e e e e e asasseeeeeaaeaaaansaaeeeaaaeassasnssseeaeeeseaanssssneeeaessaannnes 19
GET _NEW ST AT U .ottt e e e e e ettt e e e e e e e s e eeeeae e e e s snsseeeeaaeeeeanssssnneeeeeeaanns 19
1O ol I S S Y o PRSP PPPR 21
GET_ARCHIVE_HOURS _IMUL....cciiiiiiiitieie ettt e e e e e s e e e e e e e e nnnees 21
GET_ARCHIVE_DAYS MUL....oii oottt e et e e e e e e e e e e e e e e s nnnneeeeaeeens 22
CLEAR _PARAMETERS.ttt e e e e e e st e e e e e e e s e e e e e e e e e ennnnneeeas 23
Commands relevant for the 4Pl module (4-iNPut).........ccccimmmmiiiiiiiiii 28

Representing integers using the minimum bytes...........ccccciiiiniii . 29

Commands description

The sensor sends and receives the messages in the format:

Command 1

Command 2

Command n

LRC

The LRC is calculated by performing an XOR operation on the content of the message with a start value 0x55.

Command’s format.

1. Command with a one-byte header.

Description 7 | 6 | 5 4 | 3 [2 1] o
Command’s code. Command’s data size. CMD =0 CMD_LENGTH
Command’s data. CMD DATA
2. Command with a two-bytes header.
Description 7 | 6 | 5 4 | 3 | 2 | 1 | 0
Command’s code. 0 CMD
Command’s data size. CMD LENGTH
Command’s data. CMD DATA
3. Command with a three-bytes header.
Description 7 | 6 | 5 4 | 3 [2 1] o
0 0x1f (EXTRA CMD)
Command’s code. CMD
Command’s data size. CMD LENGTH

Command’s data.

CMD DATA

RF Module command list

Uplink data from the rf module

CMD

Description

DATA_DAY = 0x20-0x3F

Pulse counter daily data on billing hour

DATA_HOUR_DIF = 0x40-0x5F

Pulse counter hourly data, data accumulated on an hourly basis and
transmitted from jooby rf module on adjustable period

LAST_EVENTS = 0x60-0x7F

Last unread event

DELTA_TIME = 0x80-0x9F

Data on the time shift of the moment of frame transmission and the
moment of hourly data recording

ABS_HOUR_DIFF = OxAO-OxBF

Absolute hourly data, data accumulated on an hourly basis and transmitted
from jooby rf module on adjustable period

ABS_DATA_DAY = 0xCO-OxDF

Absolute daily data on billing hour

GET_CURRENT=0x07

Current pulse counter value

TIME2000 = 0x09

Current rf module time (time 2000 format)

NEW_STATUS=0x14

RF Module status

NEW_EVENT=0x15

New event occurs

DATA_DAY_MUL=0x16

Pulse counter data of the multichannel sensor on billing hour.

DATA_HOUR_MUL=0x17

Pulse counter data of the multichannel sensor, accumulated on a half-hour
basis.

GET_CURRENT_MUL=0x18

Current pulse counter value for multichannel devices

MTX_CMD = Ox1E

Read data from an electricity meter MTX

Supported Downlink commands. Server-side request.

CMD

Description

SET_TIME2000 = 0x02

Time correction command. 4bytes signed value in seconds Time2000
format

SET_PARAMETERS = 0x03

Set parameters command

GET_PARAMETERS = 0x04

Get parameters command

GET_ARCHIVE_HOURS = 0x05

Read pulse counter hourly archived data command

GET_ARCHIVE_DAYS = 0x06

Read pulse counter daily archived data

GET_CURRENT = 0x07

Read current pulse counter value

TIME2000 = 0x09

RF module current time

GET_ARCHIVE_EVENTS=0x0B

Read events archived data

CORRECT_TIME2000=0x0C

Command data consists of a sequence number and one byte signed
correction value. Command accepted only if sequence number greater
than value previously received by the module

GET_NEW_STATUS=0x14

Get rf module status

GET_CURRENT_MUL = 0x18

Request for reading current pulse for multichannel device

SOFT_RESTART = 0x19

Software reset

GET_ARCHIVE_HOURS_MUL=0x1A

Read pulse counter hours-based archived data of the multichannel
sensor.

GET_ARCHIVE_DAYS_MUL = 0x1B

Read pulse counter archived daily data of the multichannel sensor on
billing hour.

CLEAR_PARAMETERS = 0x1D

Reset to factory defaults settings

MTX_CMD = Ox1E

Read data from an electricity meter MTX

Detailed description of commands

DATA_DAY

DATA_DAY This command is generated by the sensor and sent within a specified period without a request from
the server when it is configured to issue daily consumption data. The command gives the full data of the pulse
counter for the specified day. The bit field Magnet=1 means a magnet influence on the specified day.

DATA_DAY = 0x20.

7 6 5 4 | 3 | 2 | 1 | 0
0 0 1 CMD_LENGTH=6
Year[7..0] | Month([3]
Month[2..0] Date[4..0]
Magnet | reserved | reserved Hour[4..0]

Counter[0][2]

Counter[0][1]

Counter[0][0]

DATA_HOUR_DIF

DATA_HOUR_DIF. This command is generated by the sensor and sent within a specified period without a
request from the server when it is configured to output hourly consumption data. The command gives the full
value of the pulse counter for the specified hour and the hourly difference in readings, which is limited to 13
bits. The bit field Magnet=1 means that there was a magnet impact at the specified hour.

DATA_HOUR_DIF = 0x40.

7 5 4 | 3 [2 | 1| 0
0 1 0 CMD_LENGTH
Year[7..0] | Month[3]
Month[2..0] Date[4..0]
Magnet | reserved | reserved Hour[4..0]
Counter[0][2]
Counter[0][1]
Counter[0][0]
Magnet reserved | reserved | Counter dif[hours-1][12..8]

Counter_dif[hours-1][7..0]

LAST_EVENTS

LAST_EVENTS. This command will be added to all commands the module sends without a request. The
GET_NEW_STATUS command will be an exception because the data is inside the command. The command
transmits the sequence code of the last sensor event.

LAST_EVENTS = 0x60. Last unread event

7 6 5 4 | 3 | 2 1 0
0 1 1 CMD_LENGTH
EVENT_SEQUENCE
EXTEND=1 STATUS[6..0]
EXTEND=0 STATUS[13..7]

STATUS bits for gas meters:

e 0-BAT = «1» — battery voltage is below the set limit,

1- MAGNET - «1» - there is an influence of a magnetic field (only for gas sensors),
2 - BUTTON — «0» - button is pressed "1" - the button is released (only for gas sensors, a pressed

button indicates the removal of the sensor),

STATUS bits 4-x channels radiomodule:

Format for MTX device:

3 - DOWN — «1» - the sensor detected a loss of connection with the server,
CHNO, CHN1 — «1» - connector is disconnected (ignore for gas sensors).
4..6 - RES - «0» - 3ape3epBMpoBaHbI;

7 - EXTEND - extend bit.

0 - BAT = «1» — battery voltage is below the set limit,
1,2 - Reserved «O».

3 - DOWN — «1» - the sensor detected a loss of connection with the server,
4 - CHNO, 5-CHN1, 6-CHN2 - «1» - connector is disconnected.
7 - EXTEND - extend bit.

8 -CHN3 - «1» - connector is disconnected
9..14 - «O» - Reserved
15- EXTEND - «O»

There are two bytes of Event_Status in the command body after the EVENT_SEQUENCE byte for the MTX
lorawan module.

LAST EVENTS = 0x60. Last unread event

7 6 5 a | 3 | 2 | 1 | o
0 1 1 CMD_LENGTH
EVENT_SEQUENCE
EXTEND=0 RES CHN1 cHNO | powN | BUTTON | MAGNETE | BAT
Status Event* (MTX)
Status_Event_2* (MTX)
STATUS bits MTX device:
® 0-«l» -Caseopen;
e 1-«1» - Detected electromagnetic field;
® 2-«l» -Setparameters remotely
® 3-«l» -Set parameters locally;
® 4-«1» - Restart software;
® 5-«1» - Wrong password and blocking;
® 6-«l» -Settime;
® 7-«l» -Correction time;
e 8-«l» - Fault meters;
® 9-«l» -Case open: terminal area;
e 10-«1» - Case open: communication area;
e 11-«1» - Tariff plan changed;
e 11-«1» -Get new tariff plan;
e 12.15-«0» - Reserved.

DELTA_TIME

DELTA_TIME This command will be substituted before the DATA_HOUR_DIF command if the DELTA_TIME_EN
parameter is set. Delta_Time[2] - is a 2-byte value of the time shift between the moment of data transmission
and the moment of the last recording of hourly data.

Value in seconds. The most significant byte comes first. Possible value - 0 - 3599 seconds.

DELTA_TIME = 0x80.

7 6 5 4 | 3 | 2 | 1 0

1 0 0 CMD_LENGTH=2

Delta_Time[2]

GET_CURRENT
GET_CURRENT. The current readings of the sensor pulse counter.

The sensor can periodically send this command without request if the type of reporting data
(TYPE_PARAMETERS = 5) has been set to 2 - transmission of current data. In the body of the command, the
current value of the pulse counter is transmitted.

GET_CURRENT = 0x07.

7 6 5 4 3 2 1 0
0 0 0 CMD GET_CURRENT = 0x07
CMD_LEGTH=4
Magnet reserved | reserved | 0
Counter[2]
Counter[1]
Counter[0]
TIME2000

TIME2000. Command transferred as uplink from the module indicates current module time. TIME_SEQ _is the
sequence number transmitted from the server by the last command to correct or set the time.

TIME2000 = 0x09

7 6 5 4 | 3 2 1 0

0 0 0 CMD TIME2000 = 0x09

CMD_LEGTH =5

TIME_SEQ

TIME2000(3]

TIME2000([2]

TIME2000[1]

TIME2000[0]

NEW_STATUS

NEW_STATUS. The command to request status information from the sensor. New command version. The
command is sent by the sensor without request once a day. LOW_CURRENT_VBATTERY - battery voltage with
minimum load (SLEEP MODE), value in mV. HIGH_CURRENT_VBATTERY — battery voltage with load simulating

transmission mode, value in mV. INT_RESISTANT is the internal resistance of the battery in mQ. If the voltage
value is 4095 mV, then the value is unknown. If the value of the internal resistance is 65535 mOhm, then the
resistance is unknown. TEMPERATURE is a signed number in degrees Celsius. REMINED_BATTERY_CAPACITY is
the remaining battery capacity, where 254 is 100%. A value of 255 means that the remaining battery capacity is
unknown. LAST_EVENT - last unread sensor event in 48 hours. This field will automatically reset after 48 hours.
After reading the sensor status, this field is also reset.

NEW_STATUS = 0x14

7 6 5 4 3 2 1 0
0 0 0 CMD GET_NEW_STATUS = 0x14
CMD_LEGTH = 12
SOFT_TYPE
SOFT_VERSION
HARD TYPE

HARD_VERSION

LOW_CURRENT_VBATTERY[11..4]

LOW_CURRENT_VBATTERY[3..0] | HIGH_CURRENT_VBATTERY[11..8]

HIGH_CURRENT_VBATTERY[7..0]

INT_RESISTANT[15..8]

INT_RESISTANT[7..0]

TEMPERATURE

REMINED_BATTERY_CAPACITY

LAST_EVENT

NEW_EVENT

NEW_EVENT. This frame is formed immediately after the event occurs. To increase the delivery probability, a
frame can be transmitted with an acknowledgement request (at the network layer).

Whether to transmit with a confirmation request or not is determined by the set parameters of the sensor
operation.

NEW_EVENT = 0x15.

7 6 5 4 3 2 1 0
0 0 0 CMD NEW_EVENT = 0x15
CMD_LENGTH
EVENTS

EVENT_SEQUENCE

PARAMETERS (TIME2000[4],VBAT[2] .. U T.4.)*

*The format of the passed parameters depends on the event type. All possible event types and their
corresponding parameters are listed in the table below.

MAGNET_ON=1, MAGNET_OFF=2, ACTIVATE=3, DEACTIVATE=4, CAN_OFF=6, INSERT=7, REMOVE=8,
COUNTER_OVER=9, EV_OPTOLOW=15, EV_OPTOFLASH=16,EV_REJOJN=18

EVENT_SEQUENCE

TIME2000([4]

BATTERY_ALARM=5

EVENT_SEQUENCE

VBAT[2]

ACTIVATE_MTX=11

EVENT_SEQUENCE

TIME2000[4]

EXT_ADDR[8]

CONNECT=12, DISCONNECT=13

EVENT_SEQUENCE

CHANNEL
EXTEND=1 COUNTERJ6..0]
EXTEND=1 COUNTER([13..7]
EXTEND=1 COUNTER([20..14]
EXTEND=0 COUNTER[27..21]
EV_MTX=17

EVENT_SEQUENCE

STATUS_EVENT

STATUS_EVENT?2

DATA_DAY_MUL

DATA_DAY_MUL. This command is generated by the multichannel sensor and sent within a specified period
without a request from the server when configured to issue daily consumption data. The command gives the
pulse counter's full value for the previous day's billing hour. Bit EXTEND in the fields CHANNELS and COUNTER
is used for field extension. If EXTEND = «1», the next byte will be an extension of the field. If EXTEND = «0», it
is the last byte of the field. CHANNELS is a bit field and describes the channels, which are the data sources for
the command. If bits 0, 2 3 are set up, then data in the command will be in the following order - data from the
0 channel first, then data from the 2 channel and data from the 3 channel last. The COUNTER field is 32 bits in
size. The COUNTER also contains the EXTEND bit. If EXTEND = «1», the next byte will contain the next high 7
bits of the pulse counter. If EXTEND = «Q», it is the last byte of the pulse counter.

DATA_DAY_MUL = 0x16.

7 6 5 4 | 3 | 2 1| 0
0 0 0 CMD DATA_ DAY MUL = 0x16
CMD_LENGTH
Year[7..0] | Month[3]
Month|[2..0] | Date[4..0]
EXTEND=1 CHANNELS[6..0]
EXTEND=0 CHANNELS[13..7]
EXTEND=1 COUNTER_1[6..0]
EXTEND=1 COUNTER_1[13..7]
EXTEND=1 COUNTER_1[20..14]
EXTEND=0 COUNTER_1[27..21]
EXTEND=1 COUNTER 2[6..0]
EXTEND=1 COUNTER 2[13..7]
EXTEND=0 COUNTER_2[20..14]

EXTEND=0 COUNTER_NI[6..0]

DATA_HOUR_MUL

DATA_HOUR_MUL. This command is generated by the multichannel sensor and sent within a specified period
without a request from the server when configured to issue half-hour consumption data. The command
contains the total value of the pulse counter for the specified hour and hourly difference, which is limited to
31-bit size. The Hours[2..0] field contains the count of hours in the command. «0» means the first hour (+1 to
the value Hours[2..0]). Bit EXTEND in the fields CHANNELS and COUNTER_X_DIF is used for field extension. If
EXTEND = «1», the next byte will be an extension of the field. If EXTEND = «Q», it is the last byte of the field.
CHANNELS is a bit field and describes the channels, which are the data sources for the command. If bits 0, 2 3
are set up, then data in the command will be in the following order - data from the 0 channel first, then data
from the 2 channel and data from the 3 channel last. COUNTER_X field contains the total value of the pulse
counter of the Hour[4..0] for the specified day. COUNTER_X also includes EXTEND bit. COUNTER_X_DIF_N has
the hourly difference and EXTEND bit.

DATA_HOUR_MUL = 0x17.

7 6 5 4 | 3 2 1| 0
0 0 0 CMD DATA HOUR MUL = 0x17
CMD LENGTH
Year[7..0] | Month[3]
Month[2..0] Date[4..0]
Hours[2..0] Hour[4..0]

EXTEND=0 CHANNELS[6..0]

EXTEND=1 COUNTER 1[6..0]

EXTEND=1 COUNTER_1[13..7]

EXTEND=0 COUNTER_1[20..14]

EXTEND=1 COUNTER_1 DIF 1[6..0]

EXTEND=0 COUNTER_1 DIF 1[13..7]

EXTEND=1 COUNTER 1 DIF 2[6..0]

EXTEND=1 COUNTER 1 DIF 2[13..7]

EXTEND=0 COUNTER_1_DIF_2[20..14]

EXTEND=1 COUNTER_2[6..0]

EXTEND=1 COUNTER 2[13..7]

EXTEND=1 COUNTER 2[20..14]

EXTEND=0 COUNTER 2[27..21]

EXTEND=0 COUNTER 2 DIF 1[6..0]

EXTEND=1 COUNTER_2_DIF_2[6..0]

EXTEND=0 COUNTER_1 DIF 2[13..7]

EXTEND=1 COUNTER N[6..0]

EXTEND=0 COUNTER N[13..7]

EXTEND=1 COUNTER_N_DIF_1[6..0]

EXTEND=1 COUNTER_N_DIF 1[13..7]

EXTEND=1 COUNTER_N DIF 1[20..14]

EXTEND=0 COUNTER_N DIF 1[27..21]

EXTEND=1 COUNTER 2 DIF 2[6..0]

EXTEND=0 COUNTER N DIF 2[13..7]

GET_CURRENT_MUL

GET_CURRENT_MUL. This command is sent in response to the reading command of the current pulse for
multichannel devices. This command can be sent periodically if parameter 5 is set to value 2.

In the command, the current value of the pulse counter is transmitted. The EXTEND bit in the CHANNELS and
COUNTER field is used to extend the field. If EXTEND ="1", then this means that the next byte will contain the
continuation of the data field. If EXTEND ="0", then this means that this is the last byte of this data field.

The CHANNELS field is a bit field that describes the channel’s data from sensor per channel. If bits 0,1,2 and 3
are set in the CHANNELS field, this means that the current data for channels present in the message. The data
for Oth channel comes first, then the 2nd, and finally from the 3rd channel.

The pulse counter is 32 bits unsigned integer . The pulse counter is transmitted using the EXTEND bit. The first
byte of the data field contains the bit of the connection indicator of the channel connector and the 6 least
significant bits of the counter.

GET_CURRENT_MUL = 0x18.

7 6 5 4 3 | 2 1 0
0 0 0 CMD GET _CURRENT MUL = 0x18
CMD_LENGTH

EXTEND=1 CHANNELS[6..0]

EXTEND=0 CHANNELS[13..7]

EXTEND=1 Counterl[6..0]

EXTEND=1 Counter1[13..7]

EXTEND=1 Counter1[20..14]

EXTEND=1 Counter1[27..21]

EXTEND=0 Counter1[31..28]

EXTEND=1 Counter2[6..0]

EXTEND=1 Counter2[13..7]

EXTEND=0 Counter2[20..14]

EXTEND=1 CounterN|[6..0]

EXTEND=1 CounterN[13..7]

EXTEND=1 CounterN[20..14]

EXTEND=1 CounterN[27..21]

EXTEND=0 CounterN[31..28]

Example:

18 06 OF 83 01 08 OA OC

18 06 - Command GET_CURRENT_MUL, len=6
OF - EXTEND = 0, CHANNELSI6..0] = OXOF - counter for channel 1,2,3,4 present
83 01 - Counter channel 1 = 0x83 = (0x01<<7) + (0x83&0x7F) <-exclude EXTEND
08 - Counter channel 2 = 0x08
0A - Counter channel 3 = 0x0A

0C - Counter channel 4 = 0x0C

ABS_HOUR_DIFF

ABS_HOUR_DIFF. This command is generated by the sensor and sent with a specified period without a request
from the server. The command sends absolute data that correspond to the impulse coefficient. This command
will be issued instead of the DATA_HOUR_DIF command in the event that metering devices were transferred to
the sensor at the moment of activation (installation) of the sensor. The IPK field is an impulse coefficient that
perceives the consumed resource in 1 impulse. The METER field is the corrected value of the pulse counter,
taking into account the initial data of the meter and sensor.

ABS_HOUR_DIF = 0xAO.

7 6 5 4 | 3 2 1 | o
1 0 1 CMD_LENGTH
IPK
Year[7..0] | Month[3]

Month[2..0] Date[4..0]

Magnet | reserved | reserved Hour[4..0]
METER[0][2]
METER[0][1]
METER[0][O]

Magnet reserved | reserved | Meter dif[hours-1]{12..8]

Meter_dif[hours-1][7..0]

ABS_DATA_DAY

ABS_DATA_DAY. This command is generated by the sensor and sent with a specified period without a request
from the server when it is configured to send daily consumption data. The command send the full data of the
meter for the hour on the specified day. The bit field Magnet=1 means that there was a magnet impact on the
specified day. The command send the daily consumption data of the metering device for the accounting hour.
This command will be issued instead of the DATA_DAY command in the event that meter readings were
transferred to the sensor at the time of activation (installation) of the sensor. The IPK field is the device's
impulse coefficient, which determines whether the consumed resource corresponds to 1 impulse.The METER
field is the corrected value of the pulse counter, taking into account the initial data of the meter and sensor.

ABS_DATA_DAY = 0xCO.

7 5 4 | 3 [2 | 1| 0
1 1 0 CMD_LENGTH=6
IPK
Year[7..0] | Month([3]
Month[2..0] Date[4..0]
Magnet reserved | reserved Hour[4..0]
METER[0][2]
METER[0][1]

METER[0][0]

Supported Downlink commands. Server-side request.

REQ_ONDEMAND_RES. Request command to transfer response with changed parameters. This command is
used in the MTX lorawan module. This command works only with electricity meter MTX. This command should
be sent before command MTX_CMD. Command's size is one byte. Field CR (bit’s 7..4) defines CODE RATE of

response (0-4/5, 1 - 4/6, 2-4/7,3-4/8), TXDROFFSET defines the offset of the transfer rate of the current setup,
see table below.

Current TXDROFFSET (min 0, max 15 - bin4)
UL SF

SF

where - SF12, 1 - SF11, 2 - SF10, 3 - SF9, 4 - SF8, 5 - SF7

SET_TIME2000

SET_TIME2000. Time setting command. Sent to the sensor to set the time. The TIME_SEQ parameter in the
command must be different from the same parameter in the TIME2000 command sent from the sensor. This is
done to avoid double processing of the command. The new sensor time will equal the current sensor time plus
the value passed in the SET_TIME2000 command. The TIME2000[4] parameter in the command is signed. The
sensor sends a response to the command.

SET TIME2000 = 0x02 - Request

7 6 5 ' 2 1 0
0 0 0 CMD SET_TIME2000 = 0x02
CMD_LEGTH =5
TIME_SEQ
TIME2000[3]

TIME2000[2]

TIME2000[1]

TIME2000[0]

SET_TIME2000 = 0x02 - Response

7 6 5 4 3 2 1 0
0 0 0 CMD SET_TIME2000 = 0x02
CMD_LEGTH =1
STATUS*

*STATUS= «1» — the time setting was successful, "0" - time setting failed (the TIME_SEQ parameter was not
changed).

SET_PARAMETERS

SET_PARAMETERS. The command to set the parameters of the sensor. The list of possible parameters is given
below. The sensor confirms the execution of the command.

SET_PARAMETERS = 0x03.

7 6 5 4 | 3 2 1 0

0 0 0 CMD SET_PARAMETERS = 0x03

CMD_LENGTH*

TYPE_PARAMETERS*

DATA_PARAMETERS|[N]

*The length of the command depends on the context (the type of parameter being set).

Description of possible parameters

TYPE_PARAMETERS = 1. Setting the reporting period (time)

TIME_SHIFT[2] — value defines the offset of the first data transmission starting from the beginning of the day.
This is a 2-byte value with a resolution of 2 minutes. Deprecated setting. The field is currently unused.

RANDOM_PERIOD[1] — one byte determines the maximum size of the pseudo-random part of the period. This
is a 1-byte value with a resolution of 600 seconds. Deprecated setting. The field is currently unused.

PERIODI[1] — value determines the frequency of sending data from the sensor. This is a 1-byte value with a
resolution of 600 seconds plus a pseudo-random value of no more than 511 seconds. If the parameter is not
set, the data sending period will equal 13320 seconds plus a pseudo-random value of no more than 551
seconds.

To set PERIOD 600sec. It’s very fast and use only for example:
03 05 - Command SET_PARAMETERS len=5
01 -TYPE_PARAMETERS =1
00 00 - Reserved
00 01 - PERIODI[1] = 600sec/600=0x1

TYPE_PARAMETERS = 4. Day report hour setting. The parameter defines the hour of the day by which the daily
consumption is calculated.

0 HOURJ[1] — value from 0 to 23. By default, checkout time is 0.

TYPE_PARAMETERS = 5. Type of reporting data

DATA_TYPE[1]. 0 — hourly consumption data, 1 - daily consumption data, 2 - current data. By default, hourly
consumption data will be transmitted.

TYPE_PARAMETERS = 8. Method for delivering priority data. With confirmation or not. Such data may include
transmitting events

TX DATA[1]. 0 — data with confirmation of data delivery, 1 —data is transmitted without delivery confirmation.

TYPE_PARAMETERS = 9. Device LoRaWAN activation method

TX_DATA[1]. O (default value) — OTAA activation by sending a JOIN packet; "1" - ABP activation by writing all
keys to the device without generating and sending a JOIN packet. OTAA by default.

TYPE PARAMETERS = 15. PowerCFG. Only for the MTX lorawan module

Set the half hours data types. This is the bitwise field, where bit 0 — ACTIV active energy for half hour (A+), bit
1 — VARI positive (capacitivy) reactive energy for half hour (A+R+), bit 2 - VARE negative (inductive) reactive
energy for half hour (A+R-), 6UT 3 — ACTIVE_EXP active energy for half hour (A-), 6UT 4 — VARI_EXP positive
(capacitivy) reactive energy for half hour (A-R+), bitl— VARE_EXP negative (inductive) reactive energy for
half hour (A-R-). Bit equal to 1 means that the data for such type of energy will be transferred. By default
value is equal to 1 and only data for ACTIV active energy will be transfered.

TYPE_PARAMETERS = 14. Data transmission schedule. Only for the MTX lorawan module.

Setup the schedule of the different data transmissions.

Type data, 1-byte value. 0 - half hour consumption data, 1 - daily consumption data, 2 - current data, 3 -
module status.

Transmission period. 1-byte value. Equals 600 seconds plus random value less than 1020 seconds.

Half hour schedule. 3-bytes value. 24 bits 6uTa defines which half hours schedule will be applied. Bit equals
to 1 means that the correspondent schedule will be applied. First byte contains bits for the 23 - 16 hours,
second byte 15 - 8 hours and final byte 7 - 0 hours.

TYPE_PARAMETERS = OxE

DATA_TYPE = 0 (half hour consumption data)

TIME

HOURS[23..16]

HOURS[15..8]

HOURS][7..0]

DATA_TYPE = 1 (daily consumption data)

TIME

HOURS|[23..16]

HOURS[15..8]

HOURS][7..0]

DATA_TYPE = 2 (current data)

TIME

HOURS[23..16]

HOURSI15..8]

HOURSJ[7..0]

DATA_TYPE = 3 (module status)

TIME

HOURS[23..16]

HOURSI15..8]

HOURS][7..0]

TYPE_PARAMETERS = 16. MULTICASTCFG. Only for the MTX lorawan module. There are 4 multicast group. All
groups have the same set of encryption keys (mcstNetsKey[16], mcstAppsKey[16]).

MCST_GROUP, 1-byte value. Number of the multicast group.

MCST ADDRI4], 4-bytes value. Address of the multicast group. The most significant byte is transmitted first.

minTime, 1 - byte value. Minimum delay in seconds before a response for the multicast request.

maxRNDTime[2], 2-bytes value. Maximum value of the random delay in seconds before a response for the
multicast request. The most significant byte is transmitted first.

netsMCSTKey[16], 16-bytes value. Network encryption key of the multicast group.

appsMCSTKey[16], 16-bytes value. Application encryption key of tne multicast group.

TYPE_PARAMETERS = 19. HOURS_OFFSET_CFG. Only for the MTX lorawan module for now. Setup the degree
of the accuracy for the half hours data transmition.

OFFSET, 5-bit value. Percent of the data repetition defines by formula: 100*OFFSET/16. Therefore the
maxumum data repetition persent is 31*100/16=193%. By default, it equals 0.

TYPE_PARAMETERS = 20. LAST_DAYCMD_CFG. For the MTX lorawan module. Allows the new option to
request only active tariffs.

NEWCMD. If “0” - all tariffs, “1” - active tariffs only. By default, it equals to O.

TYPE_PARAMETERS = 22. DELTA_TIME_EN. When setting the parameter, before transmitting data of the
hourly values of the pulse counter, the DELTA_TIME command will be substituted, which contains the time
elapsed since the last hourly value was recorded and the moment the frame was transmitted. By default,
DELTA_TIME_EN = 0, and the DELTA_TIME command will not be substituted.

—

TYPE_PARAMETERS = 24. ABSOLUTE_DATA_EN. Permission to transmit absolute data.

If parameters “0” module will send impulse counter value, if parameters is “1” and setting parameters 23,
then module send value of meter.

In firmware version >= 2.92 we have the possibility to get from device the absolute consumption value.
To get the absolute consumption value we need:
- set parameters 23 - initial consumption value and impulse coefficient
- and use parameter 24 to start to send absolute consumption value.
You can send it in one message.
Example:
initial meter value - 2.534 M3 -> you need to set in parameter 2543/10 = 254 = OxFE
impulse coefficient - 0.01m3 (10 liter per pulse) -> 0x0A
As a result we need to send : 030617000000FE0A03021801+LRC
And expect in response: 0302170103021801+LRC

TYPE_PARAMETERS = 25. SERIAL_NUMBER. For modules with pulse input. The serial number of the meter is
recorded. Dimension 6 bytes. The high byte comes first.

TYPE PARAMETERS = 26. GEOLOCATION. It is possible to set the physical location of the sensor.

Latitude[4] - latitude 4 bytes

Longitude[4] - longitude 4 bytes

Attitude[2] - altitude 2 bytes

SET_PARAMETERS = 0x03. Response to a parameter setting command.

7 6 5 4 3 | 2 1 0

0 0 0 SET_PARAMETERS = 0x03

CMD_LEGTH=2

TYPE_PARAMETERS

STATUS (1 - operation successful, O - error)*

*In old version of firmware (before 91) module don’t send result of operation.

GET_PARAMETERS

GET_PARAMETERS. The command to read the parameters set in the sensor. In the body of the command, you
must specify the type of the parameter. In response, the sensor will transmit the current value of the requested
parameter.

GET_PARAMETERS = 0x04. Command for requesting sensor operation parameters.

7 6 5 4 | 3 | 2 1 0

0 0 0 CMD GET_PARAMETERS = 0x04

CMD_LEGTH=1

TYPE_PARAMETERS*

GET_PARAMETERS = 0x04. Response to the parameter request command.

7 6 5 4 3 | 2 1 0

0 0 0 CMD GET_PARAMETERS = 0x04

CMD_LEGTH*

TYPE_PARAMETERS*

DATA_PARAMETERS[N]

GET_ARCHIVE_HOURS

GET_ARCHIVE_HOURS. Hourly consumption data archive query command. In the command data field, you
must set the date and hour of the start of reading the archive. If there is no data in the archive, then
OxFFFFFFFF will be returned as the base value. Since the length of the transmitted data from the sensor is
limited, not all the requested data will be transmitted.

GET_ARCHIVE_HOURS = 0x05

7 6 5 4 | 3 2 1| 0
0 0 0 CMD GET ARCHIVE HOURS = 0x05
CMD_LEGTH= 4
YEAR([7..0] | MONTH[3]
MONTH[2..0] DATE[4..0]

HOURJ4..0] — starting hour

NUMBER (number of samples)

Response to the command to request the hourly data archive of the sensor pulse counter. If there has been
magnet influence during the requested hour, then the Magnet bit will be set to 1.

GET_ARCHIVE_HOURS = 0x05. Response to the command to request the hourly data archive of the sensor
pulse counter.

7 6 5 4 | 3 | 2 | 1 | 0

0 0 0 CMD GET ARCHIVE HOURS = 0x05
CMD LEGTH= 2+4+hours*2
YEAR[7..0] | MONTHI3]
MONTH[2..0] DATE[4..0]
Magnet | reserved | reserved HOUR
Counter[0][2]
Counter[0][1]
Counter[0][0]
Magnet reserved | reserved | Counter_dif[12..8]

Counter_dif[hours-1][7..0]

GET_ARCHIVE_DAYS

GET_ARCHIVE_DAYS. Command for requesting the daily data archive of the sensor impulse counter. In the
command data field, you must set the start date for reading the archive. If there is no data in the archive, then
OxFFFFFFFF is returned. Since the length of the transmitted data from the sensor is limited, not all the
requested data will be transmitted.

GET_ARCHIVE_DAYS = 0x06.

7 6 5 4 | 3 2 1| 0
0 0 0 CMD GET_ARCHIVE_DAYS = 0x06
CMD_LEGTH=3
YEAR[7..0] | MONTH[3]
MONTHI2..0] | DATE[4..0]

NUMBER (number of samples)

Response to the command to request the daily data archive of the sensor impulse counter. If magnet exposure
occurred during the requested day, the Magnet bit would be set to 1.

GET_ARCHIVE_DAYS = 0x06.

7 6 5 s | 3 2 1 [o
0 0 0 CMD GET_ARCHIVE_DAYS = 0x06
CMD_LEGTH= 2+days*4
YEAR[7..0] | MONTH[3]
MONTHI[2..0] | DATE[4..0]
Counter|[0][2]
Counter|[0][1]
Counter[0][0]
Magnet reserved | reserved | 0

Counter[days-1][2]

Counter[days-1][1]

Counter[days-1][0]

GET_CURRENT

GET_CURRENT. The command to request the current readings of the sensor pulse counter.

GET_CURRENT = 0x07.

7 6 5 4 | 3 | 2 | 1 0

0 0 0 CMD GET_CURRENT = 0x07

CMD_LEGTH=0

Response to the command to request the current readings of the sensor pulse counter. The sensor can
periodically send this command without request if the type of reporting data (TYPE_PARAMETERS = 5) has
been set to 2 - transmission of current data. In the body of the command, the current value of the pulse
counter is transmitted.

GET_CURRENT = 0x07.

7 6 5 4 3 2 1 0
0 0 0 CMD GET_CURRENT = 0x07
CMD_LEGTH=4
Magnet reserved | reserved | 0
Counter[2]
Counter[1]
Counter[0]

GET_ARCHIVE_EVENTS

GET_ARCHIVE_EVENTS. The command to request the sensor event archive. In the body of the command, the
time starting from which to read the event archive is transmitted. If parameter TIME2000 = 0O, then the oldest
sensor events will be read. If TIME2000=0xFFFFFFFF, then the most recent sensor events will be read.

GET ARCHIVE EVENTS = 0x0B. The command to request the sensor event archive.

7 6 5 4 3 2 1 0

0 0 0 CMD GET_ARCHIVE_EVENTS = 0x0B

CMD_LEGTH =5

TIME2000[4] — time from which to watch events

EVENTS (number of events)

GET_ARCHIVE_EVENTS = 0x0B. Response to the request command for the sensor event archive.

7 6 5 4 | 3 | 2 | 1 | 0

0 0 0 CMD GET_ARCHIVE_EVENTS = 0x0B

CMD LEGTH = (4+1+1)*EVENTS

TIME EVENT[4]

EVENTS — event codes

EVENT_SEQUENCE

CORRECT_TIME2000

CORRECT_TIME2000. Time correction command. The TIME_SEQ parameter in the command must be different
from the same parameter in the TIME2000 command sent from the sensor. This is done to avoid double
processing of the command. The new sensor time will equal the current sensor time plus the value passed in
the CORRECT_TIME2000 command. The DIFF_TIME2000 parameter in the command is signed. The sensor
sends a response to the command.

CORRECT_TIME2000 = 0x0C - Request

7 6 5 4 | 3 2 1 0

0 0 0 CMD CORRECT TIME2000 = 0x0C

CMD_LEGTH =2

TIME_SEQ

DIFF_TIME2000

CORRECT TIME2000 = 0xOC. Response

7 6 5 4 3 2 1 0

0 0 0 CMD CORRECT_TIME2000 = 0x0C

CMD_LEGTH=1

STATUS*

*STATUS= «1» — the time setting was successful, "0" - the time setting did not occur (the TIME_SEQ parameter
was not changed).

GET_NEW_STATUS

GET_NEW_STATUS. The command to request status information from the sensor. New command version.

The command is sent by the sensor without request once a day. LOW_CURRENT_VBATTERY - battery voltage
with minimum load (SLEEP MODE), value in mV. HIGH_CURRENT_VBATTERY — battery voltage with load
simulating transmission mode, value in mV. INT_RESISTANT is the internal resistance of the battery in mQ. If
the voltage value is 4095 mV, then the value is unknown. If the internal resistance value is 65535 mOhm, then
the resistance is unknown. TEMPERATURE is a signed number in degrees Celsius.

REMINED_BATTERY_CAPACITY is the remaining battery capacity, where 254 is 100%. A value of 255 means that
the remaining battery capacity is unknown. LAST_EVENT - last unread sensor event in 48 hours. This field will
automatically reset after 48 hours. After reading the sensor status, this field is also reset.

GET_NEW_STATUS = 0x14 - Request

7 6 5 4 | 3 | 2 | 1 0

0 0 0 CMD GET_NEW_STATUS = 0x14

CMD_LEGTH=0

NEW_STATUS = 0x14 - Response

7 6 5 4 3 2 1 0
0 0 0 CMD GET_NEW_STATUS = 0x14
CMD_LEGTH =12
SOFT_TYPE
SOFT_VERSION
HARD_TYPE

HARD_VERSION

LOW_CURRENT_VBATTERY[11..4]

LOW_CURRENT_VBATTERY[3..0] | HIGH_CURRENT_VBATTERY[11..8]

HIGH_CURRENT_VBATTERY[7..0]

INT_RESISTANT[15..8]

INT_RESISTANT[7..0]

TEMPERATURE

REMINED BATTERY_CAPACITY

LAST EVENT

For the MTX lorawan module:

NEW_STATUS = 0x14 - Response

7 6 5 4 3 2 1 0

0 0 0 CMD GET_NEW_STATUS = 0x14

CMD_LEGTH =20

SOFT_TYPE

SOFT_VERSION

HARD_TYPE

HARD_VERSION

Time[4]

CAUSE_RESET

RSSI LAST DW FRAME

SNR LAST DW FRAME

CNT DWN REQ

CNT DWN FRAGS REQ

CNT UP RES

CNT UP FRAGS RES

MOTE-GW MARGIN

GW-MOTE MARGIN

NGWS

DW QUALITY

LAST_EVENT

SOFT_RESTART

SOFT_RESTART. Command for software restart. Device restart in ~30 second with new LoraWAN parameters.

SOFT_RESTART = 0x19.

7 6

4 3 | 2 | 1 0

0 0

CMD SOFT_RESTART = 0x19

CMD_LEGTH=0

Device confirm this message to send the uplink message:

SOFT_RESTART = 0x19.

7 6

4 3 | 2 | 1 0

0 0

CMD SOFT_RESTART = 0x19

CMD_LEGTH=0

Example with LRC: 19 00 4C

GET_ARCHIVE_HOURS_MUL

GET_ARCHIVE_HOURS_MUL. The request for the archive of hours-based consumption data. The request must
contain the date and the first hour of the archived data to be received in the response.. CHANNELS is a bit field
and describes the channel set of the request. The HOUR field holds the count of the hour's sections -1 (8 is
the maximum). If there is no data in the archive, then OXFFFFFFFF will be in the response as a reference value.
The response’s length is limited, so only part of the data may fit the response’s size.

GET_ARCHIVE_HOURS_MUL = 0x1A

7 6 4 | 3 | 2 1 | 0
0 0 CMD GET_ARCHIVE_HOURS_MUL = 0x1A
CMD_LEGTH=4
YEAR[7..0] | MONTH[3]
MONTHJ2..0] DATE[4..0]
HOURS HOURJ4..0] — cTapTOBbIN Yac

EXTEND=0 | CHANNELS
Response to the GET_ARCHIVE_HOURS_MUL command.

7 6 5 4 | 3 2 1 | o

0 0 0 CMD GET_ARCHIVE HOURS MUL = 0x1A

CMD_LENGTH
Year[7..0] | Month([3]
Month([2..0] Date[4..0]
Hours[2..0] Hour[4..0]

EXTEND=0 CHANNELSJ6..0]
EXTEND=1 COUNTER_1[6..0]
EXTEND=1 COUNTER_1[13..7]
EXTEND=0 COUNTER_1[20..14]
EXTEND=1 COUNTER 1 DIF 1[6..0]
EXTEND=0 COUNTER 1 DIF 1[13..7]

EXTEND=1 COUNTER 1 DIF 2[6..0]
EXTEND=1 COUNTER_1_DIF_2[13..7]
EXTEND=0 COUNTER_1_DIF_2[20..14]
EXTEND=1 COUNTER_2[6..0]
EXTEND=1 COUNTER_2[13..7]
EXTEND=1 COUNTER 2[20..14]
EXTEND=0 COUNTER 2[27..21]
EXTEND=0 COUNTER_2_DIF_1[6..0]
EXTEND=1 COUNTER_2_DIF 2[6..0]
EXTEND=0 COUNTER 2 DIF 2[13..7]
EXTEND=1 COUNTER_NI[6..0]
EXTEND=0 COUNTER_N([13..7]
EXTEND=1 COUNTER_N_DIF_1[6..0]
EXTEND=1 COUNTER_N_DIF_1[13..7]
EXTEND=1 COUNTER_N_DIF_1[20..14]
EXTEND=0 COUNTER N _DIF 1[27..21]
EXTEND=1 COUNTER_N_DIF_2[6..0]
EXTEND=0 COUNTER_N_DIF_2[13..7]

GET_ARCHIVE_DAYS_MUL

GET_ARCHIVE_DAYS_MUL. The request for the archive of daily data of the pulse counter multichannel sensor.
The request must contain the first date of the archived data to be received in the response. If there is no data
in the archive, then OXFFFFFFFF will be in the response. The response’s length is limited, so only part of the
data may fit the response’s size.

GET_ARCHIVE_DAYS_MUL = Ox1B.

7 6 5 4 | 3 2 1 | 0
0 0 0 CMD GET_ARCHIVE_DAYS_MUL = Ox1B
CMD_LEGTH= 4
YEAR(7..0] [MONTH[3]
MONTHI[2..0] | DATE[4..0]
EXTEND=0 | CHANNELS
DAYS

Response to the GET_ARCHIVE_DAYS_MUL command.

7 6 5 4 | 3 2 1 | 0
0 0 0 CMD GET_ARCHIVE_DAYS_MUL = Ox1B
CMD_LEGTH
YEAR[7..0] | MONTHI[3]
MONTHI[2..0] DATE[4..0]
EXTEND=0 | CHANNELS[6..0]
DAYS

EXTEND=1 COUNTER_1_1[6..0]
EXTEND=1 COUNTER_1_1[13..7]
EXTEND=0 COUNTER 1 1[20..14]
EXTEND=1 COUNTER_1_2[6..0]
EXTEND=1 COUNTER 1 2[13..7]

EXTEND=0 COUNTER_1 2[20..14]

EXTEND=1 COUNTER_1_NI[6..0]
EXTEND=1 COUNTER 1 N[13..7]
EXTEND=0 COUNTER 1 _N[20..14]
EXTEND=1 COUNTER 2 1[6..0]
EXTEND=1 COUNTER 2 1[13..7]
EXTEND=0 COUNTER_2_1[20..14]
EXTEND=1 COUNTER 2 2[6..0]
EXTEND=1 COUNTER 2 2[13..7]
EXTEND=0 COUNTER 2 2[20..14]
EXTEND=1 COUNTER_2_NI[6..0]
EXTEND=1 COUNTER 2_N[13..7]
EXTEND=0 COUNTER 2 N[20..14]

CLEAR_PARAMETERS
CLEAR_PARAMETERS = 0x1D. Command to reset device parameters to default factory values.

CLEAR_PARAMETERS = 0x1D.

7 6 5 4 | 3 | 2 | 1

0 0 0 CMD CLEAR_PARAMETERS = 0x1D

CMD_LEGTH=0

Response to the CLEAR_PARAMETERS command. Confirms the execution of a command.

CLEAR_PARAMETERS = Ox1D.

7 6 5 4 | 3 | 2 | 1

0 0 0 CMD CLEAR_PARAMETERS = 0x1D

CMD_LEGTH=0

MTX_CMD = 0x1E. Read data from an electricity meter MTX

MTX_CMD = Ox1E.

7 6 5 4 | 3 2 | 1
0 0 0 CMD MTX_CMD = Ox1E
CMD_LEGTH
SEQ
LAST FRAGS | RES FRAG
MSG_ID*

PROTOCOL+ACCESS LEVEL*

PROTOCOL+ACCESS LEVEL*

CMD*

CMD_LENGTH*

DATA[CMD LENGTH]*

*Data for electricity meter encoded in MTX protocol data format exept fields FRM_TYPE, DST_ADDR,
SRC_ADDR.

SEQ — sequence number, the same for all fragments of the MTX frame,
LAST — last fragment flag, «1» - is the last fragment,

FRAGS - fragments count,

ES — spare,

FRAG — fragment's index.

MTX_CMD command response. The data size could be bigger than frame size, fragmentation will be used
then.

MTX_CMD = Ox1E.

7 6 5 4 | 3 2 1 0
0 0 0 CMD MTX_CMD = Ox1E
CMD_LEGTH
SEQ
LAST | FRAGS | Res | FRAG

DATA_MTX[CMD_LENGTH-2]

SEQ — sequence number, the same for all fragments of the MTX frame,
LAST — last fragment flag, «1» - is the last fragment,

FRAGS - fragments count,

RES — spare,

FRAG — fragment's index.

DATA_MTX:

MSG_ID*

PROTOCOL+ACCESS LEVEL*

PROTOCOL+ACCESS LEVEL*

CMD*

CMD_LENGTH*

DATA[CMD_LENGTH]*

Example of data separated into three fragments:

MTX_CMD = Ox1E.

7 6 5 4 | 3 2 1 0
0 0 0 CMD MTX_CMD = Ox1E
35
SEQ
0 3 | 1 | 1

DATA_MTX[0..32]

MTX_CMD = Ox1E.

7 6 5 4 3 2 1
0 0 0 CMD MTX_CMD = Ox1E
35
SEQ
0 3 | 1 | 2

DATA_MTX][33..65]

MTX_CMD = Ox1E.

7 6 5 4 | 3 2 1
0 0 0 CMD MTX_CMD = Ox1E
36
SEQ
1 3 | 1 | 3

DATA_MTX[66..99]

Command GET_TIME request. Get time of the electricity meter MTX.

MTX_CMD = Ox1E.

7 6 5 4 3 2 1

0 0 0 CMD MTX_CMD = Ox1E

CMD_LEGTH = 0x09

SEQ

1 001 0 1

MSG_ID*

PROTOCOL+ACCESS LEVEL = 0x10

PROTOCOL+ACCESS LEVEL = 0x10

GET_TIME=0x07

CMD_LENGTH =0

CMD_END =0

LRC = 0 (MTX LRC!)

Dump: 1e 09 23 91 23 10 10 07 00 00 00 d4

Commnand GET_TIME response:

MTX_CMD = Ox1E.

7 6 5 4 3 2 1

0 0 0 CMD MTX_CMD = Ox1E

CMD_LEGTH = 0x11

SEQ

1 001 0

MSG_ID*

PROTOCOL+ACCESS LEVEL=0x10

PROTOCOL+ACCESS LEVEL=0x10

GET_TIME=0x07

CMD_LENGTH = 0x08

SummerFlag “0”-winter,”1”-summer

Sec

Min

Hour

Day (1-Sunday,2-Monday,..,7-Saturday)

Date

Month

Year

CMD_END

LRC (MTX LRC!)

Dump: 1e 11 ab 91 23 10 10 07 08 00 Oc 21 Oc 03 15 02 17 00 68 06

Command SET_TIME request. Setup time for the electricity meter MTX.

MTX_CMD = Ox1E.

7 6 5 4 3 2

0 0 0 CMD MTX_CMD = Ox1E

CMD_LEGTH = 0x11

SEQ

1 001 0

MSG_ID

PROTOCOL+ACCESS LEVEL = 0x10

PROTOCOL+ACCESS LEVEL = 0x10

GET_TIME=0x08

CMD_LENGTH = 0x08

SummerFlag “0”-winter,”1”-summer

Sec=0

Min = Ox3a (58d)

Hour = 0xOc (12d)

Day (1-Sunday,2-Monday,..,7-Saturday) 3

Date = 0x15 (21)

Month = 0x02

Year = 0x17 (23)

CMD_END =0

LRC = 0 (MTX LRC!)

Dump: 1e112391241010080800003a0c031502170000f9

Command SET_TIME response:

MTX_CMD = Ox1E.

7 6 5 4 3 2

0 0 0 CMD MTX_CMD = Ox1E

CMD_LEGTH = 0x09

SEQ

1 001 0

MSG_ID

PROTOCOL+ACCESS LEVEL = 0x10

PROTOCOL+ACCESS LEVEL = 0x10

SET_TIME=0x08

CMD_LENGTH=0

CMD_END =0

LRC (MTX LRC!)

Dump: 1e 09 89 91 24 10 10 08 00 00 4d 3b
MTX lorawan module also creates a frame with daily consumption data and sends it within a defined period

without request from the server.

Commands relevant for the 4P1 module (4-input)

Uplink data from the rf module

CMD Description

LAST _EVENTS = 0x60-0x7F Last unread event

TIME2000 = 0x09 Current rf module time (time 2000 format)

NEW_STATUS=0x14 RF Module status

NEW_EVENT=0x15 New event occurs

DATA_ DAY MUL=0x16 Pulse counter data of the multichannel sensor on billing hour.

DATA_HOUR_MUL=0x17 Pulse counter data of the multichannel sensor, accumulated on a half-hour
basis.

GET_CURRENT_MUL=0x18 Command for output current data of the pulse counter a multichannel
sensor

Supported Downlink commands. Server-side request.

CMD Description
SET_TIME2000 = 0x02 Time correction command. 4bytes signed value in seconds
Time2000 format
SET_PARAMETERS = 0x03 Set parameters command
GET_PARAMETERS = 0x04 Get parameters command
TIME2000 = 0x09 RF module current time
GET_ARCHIVE_EVENTS=0x0B Read events archived data
CORRECT_TIME2000=0x0C Command data consists of a sequence number and one byte

signed correction value. Command accepted only if sequence
number greater than value previously received by the module

GET_NEW_STATUS=0x14 Get rf module status

GET_ARCHIVE_HOURS_MUL=0x1A Read pulse counter hours-based archived data of the
multichannel sensor.

GET_ARCHIVE_DAYS_MUL = 0x1B Read pulse counter archived daily data of the multichannel

sensor on billing hour.

List of parameters valid for the 4Pl module

TYPE_PARAMETERS = 1. Setting the reporting period (time).

TYPE_PARAMETERS = 4.Day report hour setting.

TYPE_PARAMETERS = 5. Type of reporting data.

TYPE_PARAMETERS = 8. Method for delivering priority data.

TYPE_PARAMETERS = 9. Device LoRaWAN activation method.

TYPE_PARAMETERS = 10. Parameters of depassivation of battery.

TYPE_PARAMETERS = 11. Minimum time a day activity for battery (warehouse mode).

Representing integers using the minimum bytes

For the pulse counter, and not only, we use the format of the integer representation, which minimizes
the number of bytes required for data transmission over communication channels. The EXTEND bit is used for
this. If the EXTEND bit = "1", then this means that the next upper 7 bits of the pulse counter will be placed in
the next byte. If EXTEND = "0" will mean that this is the last byte with pulse counter data.

Device stores the pulse counter in unsigned integer - 4 byte, 32 bit. We need from 1 to 5 bytes to transmit the
pulse counters in messages.

EXTEND=1 COUNTER[6..0]
EXTEND=1 COUNTER([13..7]
EXTEND=1 COUNTER([20..14]
EXTEND=1 COUNTER[27..21]
EXTEND=0 COUNTER([31..28]
Example:

Counter per channel stored in device Ox0A - coded in 1 byte -> dump OxO0A ->
EXTEND bit = 0 (last byte), counter = 0x0A&O0x7F= 0xOA= 0x00 00 00 OA -> =10 in dec

Counter per channel 0x83 - coded in 2 bytes -> dump 0x83 0x01 ->
0x83:EXTEND bit = 1(not last byte), valuel = 0x83&0x7F= 0x03;
0x01:EXTEND bit =0 (last byte), value2 = 0x01;
Result counter = valuel + (value2<<7)=0x03+(0x01<<7)=0x83-> 0x00 00 00 83 = 137 in dec

Counter per channel stored in device 0x5503 - coded in 3 bytes -> dump 0x83 OxAA 0x01 ->
0x83:EXTEND bit = 1(not last byte), valuel = 0x83&0x7F= 0x03;
OXAA:EXTEND bit = 1(not last byte), value2 = OXAA&Ox7F= 0x2A;
O0x01:EXTEND bit =0 (last byte), value3 = 0x01
Result counter = valuel + (value2<<7)+(value3<<14)=
0x03+(0x2A<<7)+ (0x01<<14)=0x5503-> 0x00 00 55 03 = 21 763 in dec

Counter per channel stored in device 0x2A81BFF - coded in 4 bytes -> dump OxBF 0x83 OxAA 0x01 ->
OxBF:EXTEND bit = 1(not last byte), valuel = 0xBF&0x7F= 0x3F;
0x83:EXTEND bit = 1(not last byte), value2 = 0x83&0x7F= 0x03;
OxAA:EXTEND bit = 1(not last byte), value3 = OXAA&Ox7F= 0x2A;
0x01:EXTEND bit =0 (last byte), value4 = 0x01
Result counter = valuel + (value2<<7)+(value3<<14)+(value4<<21)=
Ox3F+ (0x03<<7)+(0x2A<<14)+ (0x01<<21)=0x2A81BFF-> 0x2 A8 1B FF = 2 785 727 in dec

Counter per channel stored in device OXFFFFFFFF - coded in 5 bytes -> dump OxFF FF FF FF FF ->

OxFF:EXTEND bit = 1(not last byte), valuel = OxFF&O0x7F= 0x7F;

OxFF:EXTEND bit = 1(not last byte), value2 = OxFF&O0x7F= 0x7F;

OxFF:EXTEND bit = 1(not last byte), value3 = OxFF&O0x7F= 0x7F;

OXFF:EXTEND bit = 1(not last byte), value4 = OxFF&0x7F= Ox7F;

OxOF:EXTEND bit = O(last byte), value5 = 0xOF&0x7F= OxOF;

Result counter = valuel + (value2<<7)+(value3<<14)+(value4<<21)+(value5<<28)=

Ox7F+ (OX7F<<7)+(0x7F<<14)+ (0x7F<<21)+(0xOF<<28)=0xFFFFFFFF-> OxFF FF FF FF = 4 294 967 295 in dec

